Loading
filterfilterClose entries
filterfilterFilter entries

Research projects

Knowledge transfer


Completed

BetonQuali - information and qualification platform

"BetonQuali - information and qualification platform", a joint project of VDZ gGmbH and its project partners, aimed to develop and test a training method for semi-skilled and unskilled employees in the concrete industry.

Find out more

Current

Increasing energy efficiency in the cement industry through training by means of virtual reality (VR)

The aim of IGF project 21619 is to develop a training simulator with which learners can independently solve typical process engineering tasks within a virtual reality (VR) environment, particularly in connection with ball mills.

Find out more

Cement production


Completed

Development of a high-efficiency SNCR process with staged combustion for reducing NOₓ and NH₃ emissions in cement industry rotary kiln plants with precalcination

The aim of the research project was to obtain general NOₓ emission abatement to 200 mg/m³ with a minimal NH₃ slip of max. 30 mg/m³ in cement industry rotary kiln plants with precalcination.

Find out more

Completed

Improving the selection and service life of metallic materials in the high-temperature range of rotary cement kilns, taking into account the relevant gas atmosphere

The aim of this research project was to investigate the issue of high-temperature corrosion in the hot area of the preheater and the rotary kiln.

Find out more

Completed

Investigation and optimisation of catalytic methods of reducing carbon monoxide and organic components in the exhaust gas of rotary kiln plants in the cement industry

As part of the IGF research project 17364 N funded by the AiF, studies were performed in conjunction with the research institute of the cement industry (FIZ) and the Institute of Chemical and Electrochemical Process Engineering at Clausthal University (ICVT) on the catalytic reduction of CO and organic components in the rotary kiln exhaust gas of cement plants.

Find out more

Completed

Stabilisation of processes with high secondary fuel use through the injection of oxygen in rotary kiln plants in the cement industry

The main aim of the research project was to evaluate the influence of oxygen enrichment on the clinker, on kiln operation and on the use of alternative fuels as well as on the composition of the exhaust gas.

Find out more

Completed

Sustainable education for cement industry workers in Russia (BIRUZEM)

At the request of VDZ members with business interests in Russian-speaking regions, VDZ therefore got together with other service providers and universities in early 2013 to work on creating a platform for training courses in Russian in the field of cement production and utilisation.

Find out more

Completed

Reducing mercury loads in rotary cement kilns using sorbents

The research project was investigating the extent to which the different types of mercury bond, the alkaline atmosphere and high dust loading influence the effectiveness of possible additives such as activated charcoal, open-hearth coke or other calcium compounds and mixtures of these.

Find out more

Concrete technology


Current

Durability of concrete according to the performance principle - classification of material resistance, production control (PC), conformity criteria and control (CC)

In this project, the systematic classification of the carbonation and chloride penetration resistance of concretes will be investigated. Based on these results, recommendations for action will be derived for production and conformity control within the framework of a performance-based durability concept.

Find out more

Current

Reduction of green house gases by process innovations in the primary Industry, SP 6: Development of a methodology for cross-project and ecological potential assessment, cement industry

The transfer and networking project ReInvent aims to provide technical and organisational support for the BMBF funding measure KlimPro-Industrie.

Find out more

Current

Recycled clay brick containing materials as a raw material in resource efficient cements and durable concretes

The topic of the research project is the utilisation of brick-containing materials from the recycling of mineral construction waste. It is being investigated whether and how resource-efficient cements can be produced with processed brick-containing construction waste and reduced clinker content, thus reducing process-related CO₂ emissions.

Find out more

Current

LeptoCalc

The use of fines from concrete recycling plants as cement constituents is currently insufficiently investigated and requires further research. The basic prerequisite for the utilisation of the fines will be to be able to characterise the material properties as quickly and comprehensively as possible and to ensure a constant material flow. An essential part of the research project is therefore the development of a rapid test method with which the properties of these fines can be estimated, among other things, by measuring the residual reactivity.

Find out more

Current

Influence of releasable alkalis from aggregates on a deleterious alkali-silica reaction in concrete

The IGF project 21386 N focuses on the relationship between the releasable alkali contents from aggregates and possible effects in concrete.

Find out more

Current

Environmentally friendly railway sleepers with calcium sulfoaluminate cements

The research project will investigate whether the technical requirements for railway sleepers with CSA cements can be realised. Also, some basic links to standards (e.g. modulus of elasticity, creep and shrinkage in accordance with EC2) must be checked and ensured.

Find out more

Chemistry and mineralogy


Completed

Analysis concept for the determination of trace elements in the eluate of cement-bound building materials (IGF No. 16989 N)

The aim of the AiF research project was to identify the causes of the sometimes greater scatter rates in the analysis results in the case of comparison trials for the long-term tank test.

Find out more

Completed

Interactions between siliceous fly ash or calcined clay as cement main constituent and superplasticizers based on polycarboxylate ether as well as their influences on rheological properties of fresh cement paste and fresh concrete

It was determined how the rheological properties and the consistency of fresh concrete can be improved by the adjustment of the type and proportion of fly ash or calcined clay in the cement to the clinker as well as the type and dosage of the superplasticizer.

Find out more

Completed

Suitability of various inorganic substances for use as a minor constituents in cements according to EN 197-1

The main scope of this research project was to supply evidence that selected inorganic substances are suitable for the use as minor constituents.

Find out more

Completed

Interactions between superplasticizers and cements with calcined clay in dependence of the temperature

The aim of the research project was to determine interactions between superplasticizers and cements with calcined clay.

Find out more

Completed

Development of an analysis concept for the quantification of cement, its main constituents as well as additives in hardened concrete

As part of the project, methods were developed that allow the cement content, cement type and additive content in hardened concrete to be reliably determined.

Find out more

Completed

Interactions between cements with several main constituents and methyl cellulose and their performance in dry mortar

Interactions between different structured or modified methyl hydroxyethyl celluloses and cements blended with limestone, blastfurnace slag or fly ash were determined.

Find out more

Narrow down your search here.

Areas

  • All
  • Publications
  • Research projects
  • Trainings
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading