Loading
filterfilterClose entries
filterfilterFilter entries

Knowledge transfer


Completed

BetonQuali - information and qualification platform

"BetonQuali - information and qualification platform", a joint project of VDZ gGmbH and its project partners, aimed to develop and test a training method for semi-skilled and unskilled employees in the concrete industry.

Learn more

Completed

Increasing energy efficiency in the cement industry through training by means of virtual reality (VR)

The aim of IGF project 21619 is to develop a training simulator with which learners can independently solve typical process engineering tasks within a virtual reality (VR) environment, particularly in connection with ball mills.

Learn more

Current

Reduction of green house gases by process innovations in the primary Industry, SP 6: Development of a methodology for cross-project and ecological potential assessment, cement industry

The transfer and networking project ReInvent aims to provide technical and organisational support for the BMBF funding measure KlimPro-Industrie.

Learn more

Cement production


Completed

Development of a high-efficiency SNCR process with staged combustion for reducing NOₓ and NH₃ emissions in cement industry rotary kiln plants with precalcination

The aim of the research project was to obtain general NOₓ emission abatement to 200 mg/m³ with a minimal NH₃ slip of max. 30 mg/m³ in cement industry rotary kiln plants with precalcination.

Learn more

Completed

Improving the selection and service life of metallic materials in the high-temperature range of rotary cement kilns, taking into account the relevant gas atmosphere

The aim of this research project was to investigate the issue of high-temperature corrosion in the hot area of the preheater and the rotary kiln.

Learn more

Completed

Investigation and optimisation of catalytic methods of reducing carbon monoxide and organic components in the exhaust gas of rotary kiln plants in the cement industry

As part of the IGF research project 17364 N funded by the AiF, studies were performed in conjunction with the research institute of the cement industry (FIZ) and the Institute of Chemical and Electrochemical Process Engineering at Clausthal University (ICVT) on the catalytic reduction of CO and organic components in the rotary kiln exhaust gas of cement plants.

Learn more

Completed

Stabilisation of processes with high secondary fuel use through the injection of oxygen in rotary kiln plants in the cement industry

The main aim of the research project was to evaluate the influence of oxygen enrichment on the clinker, on kiln operation and on the use of alternative fuels as well as on the composition of the exhaust gas.

Learn more

Completed

Sustainable education for cement industry workers in Russia (BIRUZEM)

At the request of VDZ members with business interests in Russian-speaking regions, VDZ therefore got together with other service providers and universities in early 2013 to work on creating a platform for training courses in Russian in the field of cement production and utilisation.

Learn more

Completed

Reducing mercury loads in rotary cement kilns using sorbents

The research project was investigating the extent to which the different types of mercury bond, the alkaline atmosphere and high dust loading influence the effectiveness of possible additives such as activated charcoal, open-hearth coke or other calcium compounds and mixtures of these.

Learn more

Concrete technology


Current

Performance of two-layer concrete pavers using clinker efficient cements with focus on freeze-thaw resistance

Following the recommendations of the CO₂ roadmap, a minimum of 50 % of concrete for pavers will be produced with CEM II/C or similar clinker efficient cements by 2050. Proof of their practicability for production of two-layer pavers is still pending. This research project aims to develop actions for paver manufacturers to ensure a production of concrete pavers with a high resistance to freeze-thaw attack with de-icing chemicals using clinker efficient cements.

Learn more

Current

Fire performance of ecologically optimised concretes

The purpose of the research project is to gain the first systematic scientific findings on spalling behaviour in the event of fire and on thermo-mechanical and thermo-physical properties for concretes with the new clinker-efficient cement types and with recycled aggregates.

Learn more

Current

REDOL - Aragon's REgional Hub for circularity: Demonstration Of Local industrial-urban symbiosis initiatives

Redol deals with closing material cycles using the city of Zaragoza as an example. The research project focuses on solid urban waste, which is an abundant source to produce circular products. Five value chains for solid urban waste in the Aragon region will be redesigned in order to be able to produce circular products using an industrial-urban symbiosis approach.

Learn more

Current

Fresh concrete properties and hardening behaviour of concretes with clinker-efficient cements CEM II/C and CEM VI

EN 197-5 defined the clinker-efficient cements CEM II/C and CEM VI. Technical approvals for the application of CEM II/C cements have been issued. For a widespread application, it is important that all parties involved develop confidence in the new products. With new findings on fresh concrete properties, hardening behaviour and durability two research projects of the VDZ Concrete Technology Department will provide an important basis for application of these cements in concrete for the construction industry.

Learn more

Current

Durability of concretes with clinker-efficient cements CEM II/C and CEM VI

EN 197-5 defined the clinker-efficient cements CEM II/C and CEM VI. Technical approvals for the application of CEM II/C cements have been issued. For a wide application, all parties involved have to develop confidence in the new products. With new findings on fresh concrete properties, hardening behaviour and durability two research projects of the VDZ Concrete Technology Department will provide an important basis for the application of these cements in the construction industry.

Learn more

Completed

Properties of finely dispersed materials from the recycling of mineral construction waste and their use in cement - effects on water absorption, hydration and pore structure


Chemistry and mineralogy


Completed

Analysis concept for the determination of trace elements in the eluate of cement-bound building materials (IGF No. 16989 N)

The aim of the AiF research project was to identify the causes of the sometimes greater scatter rates in the analysis results in the case of comparison trials for the long-term tank test.

Learn more

Completed

Interactions between siliceous fly ash or calcined clay as cement main constituent and superplasticizers based on polycarboxylate ether as well as their influences on rheological properties of fresh cement paste and fresh concrete

It was determined how the rheological properties and the consistency of fresh concrete can be improved by the adjustment of the type and proportion of fly ash or calcined clay in the cement to the clinker as well as the type and dosage of the superplasticizer.

Learn more

Completed

Suitability of various inorganic substances for use as a minor constituents in cements according to EN 197-1

The main scope of this research project was to supply evidence that selected inorganic substances are suitable for the use as minor constituents.

Learn more

Completed

Interactions between superplasticizers and cements with calcined clay in dependence of the temperature

The aim of the research project was to determine interactions between superplasticizers and cements with calcined clay.

Learn more

Completed

Development of an analysis concept for the quantification of cement, its main constituents as well as additives in hardened concrete

As part of the project, methods were developed that allow the cement content, cement type and additive content in hardened concrete to be reliably determined.

Learn more

Completed

Interactions between cements with several main constituents and methyl cellulose and their performance in dry mortar

Interactions between different structured or modified methyl hydroxyethyl celluloses and cements blended with limestone, blastfurnace slag or fly ash were determined.

Learn more

Environmental protection


Current

CaLby2030 – Calcium Looping to capture CO2 from industrial processes by 2030

In CaLby2030, the deployment of Calcium Looping technology (CaL) using Circulating Fluidised Bed reactors (CFB) in the cement industry will be investigated, aiming at efficient CO₂-Capture without compromising clinker production or product quality. A technology scale-up will be also evaluated in a German cement plant by exploring different retrofit possibilities. Besides the cement sector, the deployment of CFB-CaL technology in other relevant sectors will also be investigated.

Learn more

Narrow down your search here.

Areas

  • Publications
  • Research projects
  • Training
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading