Loading
filterfilterClose entries
filterfilterFilter entries

Research projects

Knowledge transfer


Completed

BetonQuali - information and qualification platform

"BetonQuali - information and qualification platform", a joint project of VDZ gGmbH and its project partners, aimed to develop and test a training method for semi-skilled and unskilled employees in the concrete industry.

Find out more

Current

Increasing energy efficiency in the cement industry through training by means of virtual reality (VR)

The aim of IGF project 21619 is to develop a training simulator with which learners can independently solve typical process engineering tasks within a virtual reality (VR) environment, particularly in connection with ball mills.

Find out more

Cement production


Current

AC²OCem - Accelerating Carbon Capture using Oxyfuel Technology in Cement Production

The project investigates the existing 1st generation oxyfuel technology and an innovative 2nd generation oxyfuel concept with the ultimate goal of reducing CO₂ avoidance cost, increasing plant efficiency and strengthening the overall competitiveness.

Find out more

Current

CLEANKER – Integrated calcium looping process for CO₂ capture

The aim of the CLEANKER (CLEAN clinKER) project is to perform large-scale testing of this technology as an integrated method (Technology Readiness Level 7). It is planned to treat 4 000 m³/h exhaust gas in a demonstration plant to be connected to an existing kiln line at the Buzzi Unicem works in Vernasca in Italy.

Find out more

Current

Optimisation and evaluation of process chains for chemical CO₂ utilisation for the emission reduction in the cement industry

To meet the ambitious climate protection targets by 2050, so-called CCUS technologies are required. In addition to CO₂ storage, the combination of CO₂ and hydrogen management offers the possibility of producing usable products. The combination of capture methods and methods of CO₂ utilisation results in a variety of possible process chains, the optimum of which depends on site-specific boundary conditions. The project analyses possible pathways in order to develop a supporting tool for strategy development for specific sites.

Find out more

Current

Increasing energy efficiency in the cement industry through training by means of virtual reality (VR)

The aim of IGF project 21619 is to develop a training simulator with which learners can independently solve typical process engineering tasks within a virtual reality (VR) environment, particularly in connection with ball mills.

Find out more

Current

Cement clinker production with simultaneous power generation

The core concept of the research project is to generate the maximum amount of electrical energy from the process exhaust gas during the production of cement clinker without affecting its kiln capacity or clinker quality. The electricity generated should cover the base load requirements for the cement production.

Find out more

Current

Method for rapid testing of the quality of flyable alternative fuels for use in the clinker burning process

As part of the research project, the German cement industry is to be provided with a utility model of a new type of apparatus for quasi-continuous incoming inspection of SRF deliveries. Based on a fast, technically robust and efficient characterization of flight capability, humidity and optically detectable features of SRF, a system shall be developed, constructed and tested in practice.

Find out more

Concrete technology


Completed

New functionalities of textile-reinforced concrete through titanium dioxide modifications Subsidiary project: fine-grained concrete and cement-bound adhesive

The working plan of the Research Institute of the Cement Industry was aimed at systematic investigation of the mix formulation and workability of a nano-based cement-bound adhesive.

Find out more

Completed

ASR performance testing: extending the database to include the 60 °C concrete test with particular reference to cements with several main constituents

In the IGF (Cooperative Industrial Research) project the framework conditions for a possible performance test method for evaluating the alkali reactivity of concrete was calibrated on the basis of the requirements of the German regulations.

Find out more

Completed

Reducing the environmental impact of concrete construction through new types of cement and the concrete produced from them using starting materials that are available in adequate quantities

The aim of this research project was the laboratory and industrial production and testing of cements that contain levels of limestone above the maximum content described in DIN EN 197-1.

Find out more

Completed

Procedures for E II aggregates

VDZ and the Brandenburg Technical University Cottbus-Senftenberg (BTU) investigated whether it is possible to define an alkali sensitivity class E II-S on the basis of the 40 °C concrete test with cloud chamber storage. In addition, criteria for the rapid test procedure and the 60 °C concrete test as well as the BTU-SP rapid test were also derived.

Find out more

Completed

Determination of characteristic values based on the degree of hydration for predicting the durability of concrete

Mortar and concrete trials were used to determine characteristic parameters, such as the void filling of the cements, their hydration characteristics, the porosity of the mortars and concretes made with these cements, and the durability of the concretes.

Find out more

Completed

Boundary conditions for accurately achieving projected concrete properties in the modern 5-material system of diverse concrete constituents

Within the framework of the research project, the intention was to identify the most important influence parameters that are responsible for showing unscheduled properties such as changed consistency, signs of sedimentation, or an accelerated or decelerated strength development in certain cases of fresh concretes which are produced over prolonged periods.

Find out more

Chemistry and mineralogy


Current

Calcined Clays from mineral secondary raw materials

The aim of the research project is to investigate the suitability of previously largely unused mineral secondary raw materials from the stone and earth industry as a resource-conserving and climate-friendly main cement constituent. The use of cal-cined clays from secondary raw materials instead of conventional main cement constituents or high-quality primary clays can make an important contribution to the production of climate-friendly and resource-efficient cements.

Find out more

Current

Use of X-ray fluorescence analysis to determine trace element contents in cements

The aim of the research project is to develop a procedure for analysing trace elements on cements using X-ray fluorescence analysis. In addition, precision data and application limits are to be determined, which are essential in order to be able to classify the results.

Find out more

Current

Resource-efficient use of sulphate-containing process dusts for sulphate optimisation using isothermal heat flow calorimetry

The research project analyses whether sulphate-rich process dusts can be used to optimise the sulphate content of cements, thereby saving anhydrite/gypsum and, in particular, improving the early strength of cements with several main constituents. Furthermore, it is to be determined whether isothermal heat flow calorimetry can be used as a fast and cost-effective investigation method for this purpose.

Find out more

Current

Interactions of accelerating admixtures and clinker-efficient cements with several main constituents to improve the early compressive strength of concrete

The acceptance of resource-efficient cements with significantly reduced specific CO₂ emissions is still too low in construction practice. The main reason for this is that early strength is not high enough for economical production processes and also competitive construction with concrete. Accelerating admixtures can improve the early strength of concrete. The research project investigates interactions between concrete admixtures that accelerate the strength development and cements with several main constituents.

Find out more

Current

Influences of two-stage mixing on the hydration behaviour of Portland-composite cements and composite cements as well as on the concrete performance

The acceptance of resource-efficient cements with significantly reduced specific CO₂ emissions is still too low in construction practice. The main reason is that the early strength is not high enough for economical production processes and competitive construction with concrete. The research project is investigating the extent to which more intensive mixing and further cement constituents besides clinker increase the mixing energy input and can increase the early cement hydration and thus the strength development.

Find out more

Current

Performance of ternary cements with Portland cement clinker, granulated blast furnace slag and calcined clay as the main constituents

The aim of the research project is the detailed investigation of the performance, durability and hydration behaviour of ternary cements with blastfurnace slag and calcined clay as main constituents (KSQ cements).

Find out more

Narrow down your search here.

Areas

  • All
  • Publications
  • Research projects
  • Trainings
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading