Loading
filterfilterClose entries
filterfilterFilter entries

Research projects on the subject Cement production


Current

Process engineering investigation of the energetic-material utilisation of wastes containing carbon fibres in cement plants - EVCAZ

In the AiF project EVCAZ, the energetic and material utilisation of wastes containing carbon fibres is to be demonstrated on an industrial scale in a cement plant. The central tasks are the evaluation of the conversion success of the CF fibres, the recording of the resulting emissions and the consideration of influences on the process and the clinker quality. The findings obtained are summarised to assess health and environmental risks and to answer questions relevant to approval as a decision-making aid for cement plant operators.

Learn more

Current

Development of a method to improve clinker cooling and to increase energy efficiency in cement rotary kilns by using infrared cameras

In the research project, infrared cameras are used to record the surface temperature of the clinker bed in the clinker cooler. Together with calculated enthalpy flows, this allows control room personnel to identify the operating condition of the cooler. This is used in operational tests to optimise the heat transfer in the clinker cooler by controlling the drive system and adjusting the cooling air distribution.

Learn more

Current

Optimisation of clinker-efficient cements by means of multimodal particle size distributions using energy-efficient products from separate ultra-fine grinding

Separate ultra-fine grinding of cement - Energy-efficient grinding meets optimised cement and concrete properties. Today, future-oriented cements can already be produced more sustainably and efficiently by using various components of different finenesses.

Learn more

Current

FlashPhos: The complete thermochemical recycling of sewage sludge

Elemental white phosphorus (P4) is indispensable for key industries such as in the food and pharmaceutical sectors and is therefore a strategic raw material of high relevance. In the FlashPhos project, the sustainable production of white phosphorus using sewage sludge will be demonstrated on a large scale.

Learn more

Current

ACCSESS – Providing access to cost-efficient, replicable, safe and flexible CCUS

ACCSESS takes a cross-sectorial approach to CO₂ Capture, Transportation, Utilisation and Storage (CCUS), working with Pulp and Paper, Cement, Waste to Energy, and Biorefining, all industries with big potential for carbon dioxide removal.

Learn more

Current

Reduction of green house gases by process innovations in the primary Industry, SP 6: Development of a methodology for cross-project and ecological potential assessment, cement industry

The transfer and networking project ReInvent aims to provide technical and organisational support for the BMBF funding measure KlimPro-Industrie.

Learn more

Current

Use of hydrogen in the calciner of rotary kiln plants to reduce CO₂ emissions in the cement industry

The main objective of the research project is to investigate both technically and economically the application of hydrogen in the calciner in the cement production process for the first time.

Learn more

Current

Optimisation of energy demand and product quality during grinding in the cement industry through the use of ceramic grinding media

The aim of the IGF project 21791 N is to better understand the influence of ceramic grinding media (balls) on the comminution process and the product quality during cement grinding in ball mills. The data will serve as a basis for designing and predicting the energy requirements and behaviour of grinding plants when using ceramic grinding media.

Learn more

Narrow down your search here.

Areas

  • Publications
  • Research projects
  • Training
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading