Loading
filterfilterClose entries
filterfilterFilter entries

Research projects on the subject Cement production


Current

Cement sieving - Use of high-speed sieving machines to increase energy efficiency in cement grinding through optimised cement classification

The IGF project 22022 N aims to evaluate the performance of high-speed sieving machines to increase energy efficiency in cement grinding circuits through optimised cement classification. The central elements here are the energy and qualitative product comparison of sieving and classifying.

Learn more

Current

CO₂ emission reduction in the cement industry by combined use of hydrogen and refuse derived fuels (RDF) in rotary kilns

The utilisation of green hydrogen has the potential to result in a further reduction in CO₂ emissions for the energy-intensive cement industry in the future. In order to achieve this, it is necessary to close the gaps in technical and scientific understanding that currently exist.

Learn more

Current

Optimisation of clinker-efficient cements by means of multimodal particle size distributions using energy-efficient products from separate ultra-fine grinding

Separate ultra-fine grinding of cement - Energy-efficient grinding meets optimised cement and concrete properties. Today, future-oriented cements can already be produced more sustainably and efficiently by using various components of different finenesses.

Learn more

Current

Development of a method to improve clinker cooling and to increase energy efficiency in cement rotary kilns by using infrared cameras

In the research project, infrared cameras are used to record the surface temperature of the clinker bed in the clinker cooler. Together with calculated enthalpy flows, this allows control room personnel to identify the operating condition of the cooler. This is used in operational tests to optimise the heat transfer in the clinker cooler by controlling the drive system and adjusting the cooling air distribution.

Learn more

Current

CaLby2030 – Calcium Looping to capture CO2 from industrial processes by 2030

In CaLby2030, the deployment of Calcium Looping technology (CaL) using Circulating Fluidised Bed reactors (CFB) in the cement industry will be investigated, aiming at efficient CO₂-Capture without compromising clinker production or product quality. A technology scale-up will be also evaluated in a German cement plant by exploring different retrofit possibilities. Besides the cement sector, the deployment of CFB-CaL technology in other relevant sectors will also be investigated.

Learn more

Current

Automised Classification and Assessment of Alternative Fuels

The aim of the project is to investigate Machine Learning models for the characterisation of alternative fuels in the cement production. For this purpose, a public-accessible database (with fuel characteristics and images) is set-up and different machine learning models will be trained on that data, the algorithms will be tested on their robustness and suggestions for the classification of the fuel quality and its visualisation in the control room will be made.

Learn more

Current

Process engineering investigation of the energetic-material utilisation of wastes containing carbon fibres in cement plants - EVCAZ

In the AiF project EVCAZ, the energetic and material utilisation of wastes containing carbon fibres is to be demonstrated on an industrial scale in a cement plant. The central tasks are the evaluation of the conversion success of the CF fibres, the recording of the resulting emissions and the consideration of influences on the process and the clinker quality. The findings obtained are summarised to assess health and environmental risks and to answer questions relevant to approval as a decision-making aid for cement plant operators.

Learn more

Current

Investigation and optimisation of the dynamic operating characteristics of the oxyfuel-operated cement clinker burning process for CO₂ capture

The oxyfuel technology is to be investigated qualitatively using a dynamic process simulation. This will provide a basis for the control and optimization of oxyfuel systems, resulting in a faster rollout of this crucial technology for CO₂ reduction.

Learn more

Narrow down your search here.

Areas

  • Publications
  • Research projects
  • Training
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading