Loading
filterfilterClose entries
filterfilterFilter entries

Research projects on the subject Chemistry and mineralogy


Current

Resource-efficient use of sulphate-containing process dusts for sulphate optimisation using isothermal heat flow calorimetry

The research project analyses whether sulphate-rich process dusts can be used to optimise the sulphate content of cements, thereby saving anhydrite/gypsum and, in particular, improving the early strength of cements with several main constituents. Furthermore, it is to be determined whether isothermal heat flow calorimetry can be used as a fast and cost-effective investigation method for this purpose.

Find out more

Current

Use of X-ray fluorescence analysis to determine trace element contents in cements

The aim of the research project is to develop a procedure for analysing trace elements on cements using X-ray fluorescence analysis. In addition, precision data and application limits are to be determined, which are essential in order to be able to classify the results.

Find out more

Current

Calcined Clays from mineral secondary raw materials

The aim of the research project is to investigate the suitability of previously largely unused mineral secondary raw materials from the stone and earth industry as a resource-conserving and climate-friendly main cement constituent. The use of cal-cined clays from secondary raw materials instead of conventional main cement constituents or high-quality primary clays can make an important contribution to the production of climate-friendly and resource-efficient cements.

Find out more

Current

Clinker burning with alternative fuels at low process temperatures - effects on coating formation and on the corrosion of refractory products in the cement rotary kiln as well as on the performance of cement

The replacement of primary fuels by alternative fuels is of great economic and ecological importance for the cement industry and is to be increased in the future. The fuel ashes are used as raw material in the cement clinker and influence its properties as well as the coating formation on the refractory lining in the kiln. Exact knowledge of these effects is indispensable for the further increase of the alternative fuel rate and the simultaneous optimisation of the kiln operation as well as for the maintenance of the clinker quality and the service life of the refractory lining.

Find out more

Narrow down your search here.

Areas

  • All
  • Publications
  • Research projects
  • Trainings
  • Events

Subjects

  • All
  • Knowledge transfer
  • Cement production
  • Cement industry
  • Concrete technology
  • Chemistry and mineralogy
  • Quality assurance
  • Environmental protection

Languages

  • All
  • English

Thank you for your interest in our publication:

Loading